

LA-UR-21-24231

Approved for public release; distribution is unlimited.

Salts in Hot Water: Developing a Scientific Basis for Supercritical Desalination and Strategic Metal Recovery Title:

Author(s): Maerzke, Katie A.

Patel, Lara Anne Yoon, Tae-Jun

IC annual report Intended for:

Issued: 2021-05-03

Comparison of Classical Force Fields

Evaluate combinations of water and NaCl force fields to see how

they behave at high temperatures

- the general trend is an increasing fraction of molecules in clusters with increasing temperature

High Temperature Aqueous CuCl Vapors

 Aqueous vapor and low-density supercritical fluids play an important role in metal transport in the earth

- solubility of metals in these high-temperature vapors is controlled by the

formation of hydrated clusters

First principles MD and MC simulations

 MD simulations don't sample equilibrium configurations; pronounced system size effects

 MC simulations with specialized cluster moves are the better method

Supercritical Water at Extreme Conditions

- Will water act like "water" under supercritical conditions?
- Use MD simulations to determine the Frenkel line (FL)
 - set of thermodynamic states that divide the fluid region into gas-like and solid-like
 - parallelism between the melting line and Frenkel line

- Supercritical water becomes an (almost) simple fluid
 - thermodynamic scaling, vanishing tetrahedrality (q; q=0.67 for ambient water))
- High-temperature plastic crystal (non-zero rotational diffusion)